Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Acta Clin Belg ; : 1-6, 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-2295074

ABSTRACT

BACKGROUND: The impact of immunosuppression on the occurrence of Coronavirus Disease 2019 (COVID-19) remains unclear. METHODS: We conducted a prospective screening of anti-S1/S2 IgGs against SARS-CoV-2 Spike protein from March, 1 2020 to May, 15 2021 (prior to the vaccination campaign) in a cohort of 713 kidney transplant recipients (KTRs). In a first phase, the factual incidence and seroprevalence of COVID-19 was established in this cohort: cases diagnosed by serology were added to RT-PCR-based diagnoses to obtain the overall incidence of COVID-19 in both symptomatic and asymptomatic KTRs. In the second phase, the kinetics of the post-COVID-19 humoral response were studied, taking into account the severity of the disease defined by the need for oxygen therapy (group S, "severe") or not (group nS, "not severe"). RESULTS: The combined diagnostic approaches identified 138 COVID-19 cases (19.2%), with 37 diagnoses by serology (26.8%). The rate of asymptomatic KTRs reached 20.3% (28/138). Thirteen patients (9.4%) died from COVID-19. The seroconversion rate was 91.7% (99/108). The peak anti-S1/S2 IgG level was 85 [30-150] AU/ml and was similar between the S and nS groups (117 [38; 186] AU/ml versus 73 [23; 140] AU/ml). A high probability of persistence of anti-S1/S2 IgG post-COVID-19 was observed, with only 10.1% (7/69) of the patients having negated their serology during the 9-month follow-up. CONCLUSION: Our pragmatic serological screening combined with RT-PCR tests provides a better estimation of the real incidence of COVID-19 in KTRs. A significant proportion of KTRs develop humoral immunity post COVID-19, which most often persists beyond 9 months.

3.
Sci Rep ; 12(1): 5156, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1931440

ABSTRACT

Asymptomatic and pauci-symptomatic cases contribute to underestimating the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Moreover, we have few studies available on the longitudinal follow-up of SARS-CoV-2 antibodies after natural infection. We tested staff members of a Belgian tertiary academic hospital for SARS-CoV-2 IgG, IgM, and IgA antibodies. We analyzed the evolution of IgM and IgG after 6 weeks, and the persistence of IgG after 3 and 10 months. At the first evaluation, 409/3776 (10.8%) participants had a positive SARS-CoV-2 serology. Among initially seropositive participants who completed phases 2 and 3, IgM were still detected after 6 weeks in 53.1% and IgG persisted at 12 weeks in 82.0% (97.5% of those with more than borderline titers). IgG levels were higher and increased over time in symptomatic but were lower and stable in asymptomatic participants. After 10 months, 88.5% of participants had sustained IgG levels (97.0% of those with more than borderline titers).


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Delivery of Health Care , Humans , Prevalence , Universities
4.
Viruses ; 14(6)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1911635

ABSTRACT

Healthcare workers (HCWs) are known to be at higher risk of developing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections although whether these risks are equal across all occupational roles is uncertain. Identifying these risk factors and understand SARS-CoV-2 transmission pathways in healthcare settings are of high importance to achieve optimal protection measures. We aimed to investigate the implementation of a voluntary screening program for SARS-CoV-2 infections among hospital HCWs and to elucidate potential transmission pathways though phylogenetic analysis before the vaccination era. HCWs of the University Hospital of Liège, Belgium, were invited to participate in voluntary reverse transcriptase-polymerase chain reaction (RT-PCR) assays performed every week from April to December 2020. Phylogenetic analysis of SARS-CoV-2 genomes were performed for a subgroup of 45 HCWs. 5095 samples were collected from 703 HCWs. 212 test results were positive, 15 were indeterminate, and 4868 returned negative. 156 HCWs (22.2%) tested positive at least once during the study period. All SARS-CoV-2 test results returned negative for 547 HCWs (77.8%). Nurses (p < 0.05), paramedics (p < 0.05), and laboratory staff handling respiratory samples (p < 0.01) were at higher risk for being infected compared to the control non-patient facing group. Our phylogenetic analysis revealed that most positive samples corresponded to independent introduction events into the hospital. Our findings add to the growing evidence of differential risks of being infected among HCWs and support the need to implement appropriate protection measures based on each individual's risk profile to guarantee the protection of both HCWs and patients. Furthermore, our phylogenetic investigations highlight that most positive samples correspond to distinct introduction events into the hospital.


Subject(s)
COVID-19 , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Delivery of Health Care , Health Personnel , Hospitals, University , Humans , Personnel, Hospital , Phylogeny , SARS-CoV-2/genetics
5.
Front Immunol ; 13: 863554, 2022.
Article in English | MEDLINE | ID: covidwho-1903010

ABSTRACT

Background: Understanding and measuring the individual level of immune protection and its persistence at both humoral and cellular levels after SARS-CoV-2 vaccination is mandatory for the management of the vaccination booster campaign. Our prospective study was designed to assess the immunogenicity of the BNT162b2 mRNA vaccine in triggering the cellular and humoral immune response in healthcare workers up to 12 months after the initial vaccination, with one additional boosting dose between 6 and 12 months. Methods: This prospective study enrolled 208 healthcare workers (HCWs) from the Liège University Hospital (CHU) of Liège in Belgium. Participants received two doses of BioNTech/Pfizer COVID-19 vaccine (BNT162b2) and a booster dose 6-12 months later. Fifty participants were SARS-CoV-2 experienced and 158 were naïve before the vaccination. Blood sampling was performed at the day of the first (T0) and second (T1) vaccine doses administration, then at 2 weeks (T2), 4 weeks (T3), 6 months (T4) and 12 months (T5) after the second dose. Between T4 and T5, participants also got the third boosting vaccine dose. A total of 1145 blood samples were collected. All samples were tested for the presence of anti-Spike antibodies, using the DiaSorin LIAISON SARS-CoV-2 Trimeric S IgG assay, and for anti-Nucleocapsid antibodies, using Elecsys anti-SARS-CoV-2 assay​​. Neutralizing antibodies against the SARS-CoV-2 Wuhan-like variant strain were quantified in all samples using a Vero E6 cell-based neutralization assay. Cell-mediated immune response was evaluated at T4 and T5 on 80 and 55 participants, respectively, by measuring the secretion of IFN-γ on peripheral blood lymphocytes using the QuantiFERON Human IFN-γ SARS-CoV-2, from Qiagen. We analyzed separately the naïve and experienced participants. Findings: We found that anti-spike antibodies and neutralization capacity levels were significantly higher in SARS-CoV-2 experienced HCWs compared to naïve HCWs at all time points analyzed except the one after boosting dose. Cellular immune response was also higher in experienced HCWs six months following vaccination. Besides the impact of SARS-CoV-2 infection history on immune response to BNT162b2 mRNA vaccine, we observed a significant negative association between age and persistence of humoral response. The booster dose induced an increase in humoral and cellular immune responses, particularly in naive individuals. Breakthrough infections resulted in higher cellular and humoral responses after the booster dose. Conclusions: Our data strengthen previous findings demonstrating that immunization through vaccination combined with natural infection is better than 2 vaccine doses immunization or natural infection alone. The benefit of the booster dose was greater in naive individuals. It may have implications for personalizing mRNA vaccination regimens used to prevent severe COVID-19 and reduce the impact of the pandemic on the healthcare system. More specifically, it may help prioritizing vaccination, including for the deployment of booster doses.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Immunoglobulin G , Kinetics , Prospective Studies , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
6.
Sci Rep ; 12(1): 9790, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1890263

ABSTRACT

While patient groups at risk for severe COVID-19 infections are now well identified, the risk factors associated with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) transmission and immunization are still poorly understood. In a cohort of staff members of a Belgian tertiary academic hospital tested for SARS-CoV-2 antibodies during the early phase of the pandemic and followed-up after 6 weeks, 3 months and 10 months, we collected personal, occupational and medical data, as well as symptoms based on which we constructed a COVID-19 score. Seroprevalence was higher among participants in contact with patients or with COVID-19 confirmed subjects or, to a lesser extent, among those handling respiratory specimens, as well as among participants reporting an immunodeficiency or a previous or active hematological malignancy, and correlated with several symptoms. In multivariate analysis, variables associated with seropositivity were: contact with COVID-19 patients, immunodeficiency, previous or active hematological malignancy, anosmia, cough, nasal symptoms, myalgia, and fever. At 10 months, participants in contact with patients and those with higher initial COVID-19 scores were more likely to have sustained antibodies, whereas those with solid tumors or taking chronic medications were at higher risk to become seronegative.


Subject(s)
COVID-19 , Hematologic Neoplasms , Antibodies, Viral , COVID-19/epidemiology , Delivery of Health Care , Health Personnel , Humans , SARS-CoV-2 , Seroepidemiologic Studies , Universities
7.
Kidney360 ; 2(4): 639-652, 2021 04 29.
Article in English | MEDLINE | ID: covidwho-1776889

ABSTRACT

Background: Kidney damage has been reported in patients with COVID-19. Despite numerous reports about COVID-19-associated nephropathy, the factual presence of the SARS-CoV-2 in the renal parenchyma remains controversial. Methods: We consecutively performed 16 immediate (≤3 hours) postmortem renal biopsies in patients diagnosed with COVID-19. Kidney samples from five patients who died from sepsis not related to COVID-19 were used as controls. Samples were methodically evaluated by three pathologists. Virus detection in the renal parenchyma was performed in all samples by bulk RNA RT-PCR (E and N1/N2 genes), immunostaining (2019-nCOV N-Protein), fluorescence in situ hybridization (nCoV2019-S), and electron microscopy. Results: The mean age of our COVID-19 cohort was 68.2±12.8 years, most of whom were male (69%). Proteinuria was observed in 53% of patients, whereas AKI occurred in 60% of patients. Acute tubular necrosis of variable severity was found in all patients, with no tubular or interstitial inflammation. There was no difference in acute tubular necrosis severity between the patients with COVID-19 versus controls. Congestion in glomerular and peritubular capillaries was respectively observed in 56% and 88% of patients with COVID-19, compared with 20% of controls, with no evidence of thrombi. The 2019-nCOV N-Protein was detected in proximal tubules and at the basolateral pole of scattered cells of the distal tubules in nine out of 16 patients. In situ hybridization confirmed these findings in six out of 16 patients. RT-PCR of kidney total RNA detected SARS-CoV-2 E and N1/N2 genes in one patient. Electron microscopy did not show typical viral inclusions. Conclusions: Our immediate postmortem kidney samples from patients with COVID-19 highlight a congestive pattern of AKI, with no significant glomerular or interstitial inflammation. Immunostaining and in situ hybridization suggest SARS-CoV-2 is present in various segments of the nephron.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Aged , Aged, 80 and over , COVID-19/complications , Capillaries/pathology , Humans , In Situ Hybridization, Fluorescence , Kidney Glomerulus/pathology , Male , Middle Aged , Necrosis , SARS-CoV-2
8.
PLoS One ; 16(3): e0247773, 2021.
Article in English | MEDLINE | ID: covidwho-1575465

ABSTRACT

BACKGROUND: The coronavirus infectious disease 19 (COVID-19) pandemic has resulted in significant morbidities, severe acute respiratory failures and subsequently emergency departments' (EDs) overcrowding in a context of insufficient laboratory testing capacities. The development of decision support tools for real-time clinical diagnosis of COVID-19 is of prime importance to assist patients' triage and allocate resources for patients at risk. METHODS AND PRINCIPAL FINDINGS: From March 2 to June 15, 2020, clinical patterns of COVID-19 suspected patients at admission to the EDs of Liège University Hospital, consisting in the recording of eleven symptoms (i.e. dyspnoea, chest pain, rhinorrhoea, sore throat, dry cough, wet cough, diarrhoea, headache, myalgia, fever and anosmia) plus age and gender, were investigated during the first COVID-19 pandemic wave. Indeed, 573 SARS-CoV-2 cases confirmed by qRT-PCR before mid-June 2020, and 1579 suspected cases that were subsequently determined to be qRT-PCR negative for the detection of SARS-CoV-2 were enrolled in this study. Using multivariate binary logistic regression, two most relevant symptoms of COVID-19 were identified in addition of the age of the patient, i.e. fever (odds ratio [OR] = 3.66; 95% CI: 2.97-4.50), dry cough (OR = 1.71; 95% CI: 1.39-2.12), and patients older than 56.5 y (OR = 2.07; 95% CI: 1.67-2.58). Two additional symptoms (chest pain and sore throat) appeared significantly less associated to the confirmed COVID-19 cases with the same OR = 0.73 (95% CI: 0.56-0.94). An overall pondered (by OR) score (OPS) was calculated using all significant predictors. A receiver operating characteristic (ROC) curve was generated and the area under the ROC curve was 0.71 (95% CI: 0.68-0.73) rendering the use of the OPS to discriminate COVID-19 confirmed and unconfirmed patients. The main predictors were confirmed using both sensitivity analysis and classification tree analysis. Interestingly, a significant negative correlation was observed between the OPS and the cycle threshold (Ct values) of the qRT-PCR. CONCLUSION AND MAIN SIGNIFICANCE: The proposed approach allows for the use of an interactive and adaptive clinical decision support tool. Using the clinical algorithm developed, a web-based user-interface was created to help nurses and clinicians from EDs with the triage of patients during the second COVID-19 wave.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Decision Support Systems, Clinical , Adult , Aged , Cough/diagnosis , Dyspnea/diagnosis , Female , Fever/diagnosis , Headache/diagnosis , Hospitals , Humans , Male , Middle Aged , Pharyngitis/diagnosis , SARS-CoV-2/isolation & purification
9.
Diagnostics (Basel) ; 11(12)2021 Nov 27.
Article in English | MEDLINE | ID: covidwho-1542451

ABSTRACT

Due to their ease-of-use, lateral flow assay SARS-CoV-2 antigen-detecting rapid diagnostic tests could be suitable candidates for antigen-detecting rapid diagnostic self-test (Ag-RDST). We evaluated the practicability of the Ag-RDST BIOSYNEX Antigen Self-Test COVID-19 Ag+ (Biosynex Swiss SA, Freiburg, Switzerland), using self-collected nasal secretions from the turbinate medium (NMT), in 106 prospectively included adult volunteers living in Paris, France. The majority of the participants correctly understood the instructions for use (94.4%; 95% confidence interval (CI): 88.3-97.4), showing a great ability to perform the entire self-test procedure to obtain a valid and interpretable result (100%; 95% CI: 96.5-100), and demonstrated the ability to correctly interpret test results (96.2%; 95% CI: 94.2-97.5) with a high level of general satisfaction. About one in eight participants (# 15%) needed verbal help to perform or interpret the test, and only 3.8% of test results were misinterpreted. By reference to multiplex real-time RT-PCR, the Ag-RDST showed 90.9% and 100% sensitivity and specificity, respectively, and high agreement (98.1%), reliability (0.94), and accuracy (90.9%) to detect SARS-CoV-2 antigen. Taken together, our study demonstrates the high usability and accuracy of BIOSYNEX Antigen Self-Test COVID-19 Ag+ for supervised self-collected NMT sampling in an unselected adult population living in France.

10.
Pathogens ; 10(11)2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1480902

ABSTRACT

The testing and isolation of patients with coronavirus disease 2019 (COVID-19) are indispensable tools to control the ongoing COVID-19 pandemic. PCR tests are considered the "gold standard" of COVID-19 testing and mostly involve testing nasopharyngeal swab specimens. Our study aimed to compare the sensitivity of tests for various sample specimens. Seventy-five participants with confirmed COVID-19 were included in the study. Nasopharyngeal swabs, oropharyngeal swabs, Oracol-collected saliva, throat washes and rectal specimens were collected along with pooled swabs. Participants were asked to complete a questionnaire to correlate specific clinical symptoms and the symptom duration with the sensitivity of detecting COVID-19 in various sample specimens. Sampling was repeated after 7 to 10 days (T2), then after 14 to 20 days (T3) to perform a longitudinal analysis of sample specimen sensitivity. At the first time point, the highest percentages of SARS-CoV-2-positive samples were observed for nasopharyngeal samples (84.3%), while 74%, 68.2%, 58.8% and 3.5% of throat washing, Oracol-collected saliva, oropharyngeal and rectal samples tested positive, respectively. The sensitivity of all sampling methods except throat wash samples decreased rapidly at later time points compared to the first collection. The throat washing method exhibited better performance than the gold standard nasopharyngeal swab at the second and third time points after the first positive test date. Nasopharyngeal swabs were the most sensitive specimens for early detection after symptom onset. Throat washing is a sensitive alternative method. It was found that SARS-CoV-2 persists longer in the throat and saliva than in the nasopharynx.

11.
JAMA Netw Open ; 4(10): e2128757, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1460118

ABSTRACT

Importance: Recent data suggest a relatively low incidence of COVID-19 among children. The possible role that children attending primary school may play in the transmission of SARS-CoV-2 remains poorly understood. Objective: To gain a better understanding of the possible role of children in the transmission of SARS-CoV-2. Design, Setting, and Participants: This prospective cohort study was conducted from September 21 to December 31, 2020, in a primary school in Liège, Belgium, among a volunteer sample of 181 children, parents, and school employees. Exposures: Participants were tested for SARS-CoV-2 infection once a week for 15 weeks through throat washing, performed with 5 mL of saline and collected in a sterile tube after approximately 30 seconds of gargling. Quantitative reverse transcription-polymerase chain reaction was performed to detect SARS-CoV-2 infection. Main Outcomes and Measures: In case of test positivity, participants were asked to complete a questionnaire aimed at determining the timing of symptom onset and symptom duration. SARS-CoV-2 genetic sequencing was also performed. Confirmed cases were linked based on available information on known contacts and viral sequences. Results: A total of 181 individuals participated in this study, including 63 children (34 girls [54.0%]; mean [SD] age, 8.6 [1.9] years [range, 5-13 years]) and 118 adults (75 women [63.6%]; mean [SD] age, 42.5 [5.7] years [range, 30-59 years]). Forty-five individuals (24.9%) tested positive: 13 children (20.6%; 95% CI, 10.6%-30.6%) and 32 adults (27.1%; 95% CI, 19.1%-35.7%) (P = .34). Children were more often asymptomatic compared with adults (6 [46.2%; 95% CI, 19.1%-73.3%] vs 4 of 31 [12.9%; 95% CI, 1.3%-24.5%]; P = .04). The median duration of symptoms was shorter in children than in adults (0.00 days [IQR, 0.00-1.00 days] vs 15.00 days [IQR, 7.00-22.00 days]). A reconstruction of the outbreak revealed that most transmission events occurred between teachers and between children within the school. Of the observed household transmission events, most seemed to have originated from a child or teacher who acquired the infection at school. Conclusions and Relevance: Despite the implementation of several mitigation measures, the incidence of COVID-19 among children attending primary school in this study was comparable to that observed among teachers and parents. Transmission tree reconstruction suggests that most transmission events originated from within the school. Additional measures should be considered to reduce the transmission of SARS-CoV-2 at school, including intensified testing.


Subject(s)
COVID-19 Testing , COVID-19/prevention & control , COVID-19/transmission , Mass Screening , Adolescent , Adult , Asymptomatic Infections/epidemiology , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Contact Tracing , Disease Outbreaks , Female , Humans , Incidence , Logistic Models , Male , Middle Aged , Prospective Studies , School Teachers , Schools
12.
Sci Rep ; 11(1): 18580, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1428900

ABSTRACT

At the end of 2020, several new variants of SARS-CoV-2-designated variants of concern-were detected and quickly suspected to be associated with a higher transmissibility and possible escape of vaccine-induced immunity. In Belgium, this discovery has motivated the initiation of a more ambitious genomic surveillance program, which is drastically increasing the number of SARS-CoV-2 genomes to analyse for monitoring the circulation of viral lineages and variants of concern. In order to efficiently analyse the massive collection of genomic data that are the result of such increased sequencing efforts, streamlined analytical strategies are crucial. In this study, we illustrate how to efficiently map the spatio-temporal dispersal of target mutations at a regional level. As a proof of concept, we focus on the Belgian province of Liège that has been consistently sampled throughout 2020, but was also one of the main epicenters of the second European epidemic wave. Specifically, we employ a recently developed phylogeographic workflow to infer the regional dispersal history of viral lineages associated with three specific mutations on the spike protein (S98F, A222V and S477N) and to quantify their relative importance through time. Our analytical pipeline enables analysing large data sets and has the potential to be quickly applied and updated to track target mutations in space and time throughout the course of an epidemic.


Subject(s)
Genome, Viral , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Belgium , Epidemiological Monitoring , Humans
13.
J Clin Med ; 10(13)2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1288915

ABSTRACT

(1) Background: In the current context of the COVID-19 crisis, there is a need for fast, easy-to-use, and sensitive diagnostic tools in addition to molecular methods. We have therefore decided to evaluate the performance of newly available antigen detection kits in "real-life" laboratory conditions. (2) Methods: The sensitivity and specificity of two rapid diagnostic tests (RDT)-the COVID-19 Ag Respi-Strip from Coris Bioconcept, Belgium (CoRDT), and the coronavirus antigen rapid test cassette from Healgen Scientific, LLC, USA (HeRDT)-were evaluated on 193 nasopharyngeal samples using RT-PCR as the gold standard. (3) Results: The sensitivity obtained for HeRDT was 88% for all collected samples and 91.1% for samples with Ct ≤ 31. For the CoRDT test, the sensitivity obtained was 62% for all collected samples and 68.9% for samples with Ct ≤ 31. (4) Conclusions: Despite the excellent specificity obtained for both kits, the poor sensitivity of the CoRDT did not allow for its use in the rapid diagnosis of COVID-19. HeRDT satisfied the World Health Organization's performance criteria for rapid antigen detection tests. Its high sensitivity, quick response, and ease of use allowed for the implementation of HeRDT at the laboratory of the University Hospital of Liège.

15.
BMC Infect Dis ; 21(1): 89, 2021 Jan 20.
Article in English | MEDLINE | ID: covidwho-1067199

ABSTRACT

BACKGROUND: There are limited data on Coronavirus disease 2019 (COVID-19) in solid organ transplant patients, especially in heart transplant recipients, with only a few case reports and case series described so far. Heart transplant recipients may be at particular high risk due to their comorbidities and immunosuppressed state. CASE PRESENTATION: This report describes the clinical course and the challenging management of early COVID-19 infection in two heart transplant recipients who tested positive for the SARS-CoV-2 virus in the perioperative period of the transplant procedure. The two patients developed a severe form of the disease and ultimately died despite the initiation of an antiviral monotherapy with hydroxychloroquine coupled with the interruption of mycophenolate mofetil. CONCLUSIONS: These two cases illustrate the severity and poor prognosis of COVID-19 in the perioperative period of a heart transplant. Thorough screening of donors and recipients is mandatory, and the issue of asymptomatic carriers needs to be addressed.


Subject(s)
COVID-19/complications , COVID-19/therapy , Heart Transplantation/adverse effects , SARS-CoV-2 , Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , Comorbidity , Female , Humans , Hydroxychloroquine/therapeutic use , Immunocompromised Host , Male , Middle Aged , Mycophenolic Acid/administration & dosage , Transplant Recipients
16.
Mol Biol Evol ; 38(4): 1608-1613, 2021 04 13.
Article in English | MEDLINE | ID: covidwho-900448

ABSTRACT

Since the start of the COVID-19 pandemic, an unprecedented number of genomic sequences of SARS-CoV-2 have been generated and shared with the scientific community. The unparalleled volume of available genetic data presents a unique opportunity to gain real-time insights into the virus transmission during the pandemic, but also a daunting computational hurdle if analyzed with gold-standard phylogeographic approaches. To tackle this practical limitation, we here describe and apply a rapid analytical pipeline to analyze the spatiotemporal dispersal history and dynamics of SARS-CoV-2 lineages. As a proof of concept, we focus on the Belgian epidemic, which has had one of the highest spatial densities of available SARS-CoV-2 genomes. Our pipeline has the potential to be quickly applied to other countries or regions, with key benefits in complementing epidemiological analyses in assessing the impact of intervention measures or their progressive easement.


Subject(s)
COVID-19/transmission , COVID-19/virology , Genome, Viral , Phylogeography , SARS-CoV-2/genetics , Belgium , COVID-19/epidemiology , Evolution, Molecular , Genomics , Humans , Likelihood Functions , Mutation , Patient Isolation , Phylogeny , Physical Distancing , Spatio-Temporal Analysis , Workflow
17.
PLoS One ; 15(10): e0240779, 2020.
Article in English | MEDLINE | ID: covidwho-874201

ABSTRACT

The practicability of a prototype capillary whole-blood IgG-IgM COVID-19 self-test (Exacto® COVID-19 self-test, Biosynex Swiss SA, Freiburg, Switzerland) as a serological screening tool for SARS-CoV-2 infection adapted to the general public was evaluated in a cross-sectional, general adult population study performed between April and May 2020 in Strasbourg, France, consisting of face-to-face, paper-based, semi-structured, and self-administrated questionnaires. Practicability was defined as the correct use of the self-test and the correct interpretation of the result. The correct use of self-test was conditioned by the presence of the control band after 15-min of migration. The correct interpretation of the tests was defined by the percent agreement between the tests results read and interpret by the participants compared to the expected results coded by the numbers and verified by trained observers. A total of 167 participants (52.7% female; median age, 35.8 years; 82% with post-graduate level) were enrolled, including 83 and 84 for usability and test results interpretation substudies, respectively. All participants (100%; 95% CI: 95.6-100) correctly used the self-test. However, 12 (14.5%; 95% CI: 8.5-23.6) asked for verbal help. The percent agreement between the tests results read and interpret by the participants compared to the expected results was 98.5% (95% CI: 96.5-99.4). However, misinterpretation occurred in only 2.3% of positive and 1.2% of invalid test results. Finally, all (100%) participants found that performing the COVID-19 self-test was easy; and 98.8% found the interpretation of the self-test results easy. Taken together, these pilot observations demonstrated for the first-time, high practicability and satisfaction of COVID-19 self-testing for serological IgG and IgM immune status, indicating its potential for use by the general public to complete the arsenal of available SARS-CoV-2 serological assays in the urgent context of the COVID-19 epidemic.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Reagent Kits, Diagnostic/standards , Adult , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/standards , Coronavirus Infections/blood , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Mass Screening/methods , Mass Screening/standards , Pandemics , Pneumonia, Viral/blood , Point-of-Care Testing , Self Administration , Sensitivity and Specificity
18.
J Clin Microbiol ; 58(10)2020 09 22.
Article in English | MEDLINE | ID: covidwho-858045

ABSTRACT

Control of the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires accurate laboratory testing to identify infected individuals while also clearing essential staff to continue to work. At the current time, a number of quantitative real-time PCR (qRT-PCR) assays have been developed to identify SARS-CoV-2, targeting multiple positions in the viral genome. While the mutation rate of SARS-CoV-2 is moderate, given the large number of transmission chains, it is prudent to monitor circulating viruses for variants that might compromise these assays. Here, we report the identification of a C-to-U transition at position 26340 of the SARS-CoV-2 genome that is associated with failure of the cobas SARS-CoV-2 E gene qRT-PCR in eight patients. As the cobas SARS-CoV-2 assay targets two positions in the genome, the individuals carrying this variant were still called SARS-CoV-2 positive. Whole-genome sequencing of SARS-CoV-2 showed all to carry closely related viruses. Examination of viral genomes deposited on GISAID showed this mutation has arisen independently at least four times. This work highlights the necessity of monitoring SARS-CoV-2 for the emergence of single-nucleotide polymorphisms that might adversely affect RT-PCRs used in diagnostics. Additionally, it argues that two regions in SARS-CoV-2 should be targeted to avoid false negatives.


Subject(s)
Betacoronavirus/genetics , Viral Envelope Proteins/genetics , Betacoronavirus/classification , Betacoronavirus/isolation & purification , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Envelope Proteins , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Databases, Genetic , False Negative Reactions , Genome, Viral/genetics , Humans , Molecular Diagnostic Techniques , Mutation , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2
19.
Ann Biol Clin (Paris) ; 78(5): 499-518, 2020 10 01.
Article in French | MEDLINE | ID: covidwho-836031

ABSTRACT

The French society of clinical biology "Biochemical markers of COVID-19" has set up a working group with the primary aim of reviewing, analyzing and monitoring the evolution of biological prescriptions according to the patient's care path and to look for markers of progression and severity of the disease. This study covers all public and private sectors of medical biology located in metropolitan and overseas France and also extends to the French-speaking world. This article presents the testimonies and data obtained for the "Overseas and French-speaking countries" sub-working group made up of 45 volunteer correspondents, located in 20 regions of the world. In view of the delayed spread of the SARS-CoV-2 virus, the overseas regions and the French-speaking regions have benefited from feedback from the first territories confronted with COVID-19. Thus, the entry of the virus or its spread in epidemic form could be avoided, thanks to the rapid closure of borders. The overseas territories depend very strongly on air and/or sea links with the metropolis or with the neighboring continent. The isolation of these countries is responsible for reagent supply difficulties and has necessitated emergency orders and the establishment of stocks lasting several months, in order to avoid shortages and maintain adequate patient care. In addition, in countries located in tropical or intertropical zones, the diagnosis of COVID-19 is complicated by the presence of various zoonoses (dengue, Zika, malaria, leptospirosis, etc.).


Subject(s)
Clinical Laboratory Services , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Global Health/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Travel Medicine/organization & administration , Adult , Africa/epidemiology , Aged , Aged, 80 and over , Belgium/epidemiology , Betacoronavirus/physiology , Biomarkers/analysis , Biomarkers/blood , COVID-19 , Cambodia/epidemiology , Child , Clinical Laboratory Services/organization & administration , Clinical Laboratory Services/statistics & numerical data , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Coronavirus Infections/transmission , Diagnosis, Differential , Female , France/epidemiology , Hospitalization/statistics & numerical data , Humans , Infant, Newborn , Islands/epidemiology , Language , Laos/epidemiology , Louisiana/epidemiology , Male , Medical Laboratory Personnel/organization & administration , Medical Laboratory Personnel/statistics & numerical data , Middle Aged , Pandemics , Pneumonia, Viral/transmission , Retrospective Studies , SARS-CoV-2 , Surveys and Questionnaires , Survival Analysis , Travel Medicine/methods , Travel Medicine/statistics & numerical data , Travel-Related Illness , Tropical Climate , Tropical Medicine/methods , Tropical Medicine/organization & administration , Tropical Medicine/statistics & numerical data , Vietnam/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL